Comment résoudre des systèmes linéaires algébriquement

<

Contenu

  • Instructions
  • Conseils & avertissements
  • ressources
  • div itemprop="description" class="intro marginTop" data-module="article-intro">

    Vous avez plusieurs options lorsque vous avez besoin pour résoudre des systèmes d`équations linéaires. Une des méthodes les plus précises est de résoudre le problème algébriquement. Cette méthode est précise car elle élimine le risque de faire une erreur graphique. En fait, en utilisant l`algèbre pour résoudre des systèmes d`équations linéaires élimine le besoin de papier totalement graphique. Ceci est la meilleure méthode à utiliser lorsque vous travaillez avec des systèmes d`équations qui incluent de nombreuses fractions ou semblent avoir des réponses fractionnaires.

    Choses que vous devez

    • Calculatrice (facultatif)

    Instructions

    1. Commencer par la résolution des équations pour x ou y. Choisissez celui qui est le plus simple à résoudre. Dans 2x - 3y = -2, 4x + y = 24, il est plus facile de résoudre la seconde équation pour y en soustrayant 4x des deux côtés, vous donnant y = -4x + 24.

    2. Remplacez cette valeur dans la première équation pour y. Cela vous donne 2x - 3 (-4x + 24) = -2. Remarquez comment la variable y est maintenant éliminé.




    3. Simplifier l`équation résultante. Cela vous donne 2x + 12x - 72 = -2. Cela simplifie à 14x - 72 = -2.

    4. Résolvez cette équation pour x. Commencez par ajouter 72 aux deux côtés de l`équation pour vous donner 14x = 70. Diviser les deux côtés par 14 pour vous x = 5 donner.

    5. Prenez cette valeur pour x et le mettre dans l`une des équations d`origine. Cela vous donne 4 * 5 + y = 24 si vous utilisez la deuxième équation.

    6. Résolvez pour y. Dans cet exemple, 20 + y = 24. Soustraire 20 des deux côtés pour vous donner y = 4.

    7. Indiquez votre réponse comme une paire ordonnée. La réponse est (5,4).

    8. Vérifiez votre réponse en branchant ces valeurs dans les deux équations. Vous devriez vous retrouver avec deux vraies déclarations. Dans cet exemple, 2 5 - 3 4 = -2, ce qui vous donne 10-12 = -2, et cela est vrai. Pour la deuxième équation, 4 * 5 + 4 = 24, ce qui vous donne 20 + 4 = 24, ce qui est vrai. La réponse est correcte.

    Conseils & Avertissements

    • Si vous avez une variable dans une équation qui ne dispose pas d`un coefficient, choisissez celui-là pour résoudre quand vous commencez le processus. Ce sera le plus facile à résoudre dans le problème.
    • Une fois que vous trouvez la valeur de l`une des variables, vous pouvez le brancher dans une ou l`autre équation, aussi longtemps que vous utilisez l`équation originale.
    • systèmes Résolution d`équations linéaires algébriquement est parfois appelé la méthode de substitution, mais le processus est le même, peu importe ce qu`elle est appelée.
    • Vérifiez toujours votre réponse. Ceci est la meilleure façon de savoir si vous avez fait une simple erreur le long du chemin.

    Ressources

    • Photo miguel de crédit Ugalde

    AUTRES

    » » » » Comment résoudre des systèmes linéaires algébriquement