Le coefficient de détermination, R au carré, est utilisé dans la théorie de la régression linéaire dans les statistiques comme une mesure de la façon dont l`équation de régression correspond aux données. Il est le carré de R, le coefficient de corrélation, qui nous fournit le degré de corrélation entre la variable dépendante, Y, et la variable indépendante X. R varie de -1 à +1. Si R est égal à 1, alors Y est parfaitement proportionnel à X, si la valeur de x augmente d`un certain degré, la valeur de Y augmente dans les mêmes proportions. Si R est égal à -1, alors il existe une corrélation négative parfaite entre Y et X. Si X augmente, alors Y va diminuer dans la même proportion. D`autre part, si R = 0, alors il n`y a pas de relation linéaire entre X et Y. R au carré varie de 0 à 1. Cela nous donne une idée de la façon dont notre équation de régression correspond aux données. Si R au carré est égal à 1, alors notre meilleur ajustement passe par tous les points dans les données, et toutes les variations dans les valeurs observées de Y est expliqué par sa relation avec les valeurs de X. Par exemple, si nous obtenons un R au carré la valeur de 0,80, puis 80% de la variation des valeurs de Y est expliquée par sa relation linéaire avec les valeurs observées de X.
Calculer la somme des produits des valeurs de X et Y, et multiplier par "n."
Soustraire cette valeur à partir du produit des sommes des valeurs de X et Y. En notant cette valeur S1:
S1 = n (XY?) - (? X) (AY)Calculer la somme des carrés des valeurs de X, multiplier par "n," et soustraire cette valeur de la place de la somme des valeurs de X. Désignons ce par P1:
P1 = n (? X2) - (? X) 2
Prenez la racine carrée de P1, que nous désignerons par P1 `.Calculer la somme des carrés des valeurs de Y, multiplier par "n," et soustraire cette valeur de la place de la somme des valeurs de Y. Désignons ce par Q1:
Q1 = n (Y2?) - (? Y) 2
Prenez la racine carrée de Q1, que nous désignerons par Q1 `Calculer R, le coefficient de corrélation, en divisant S1 par le produit de P1 et Q1 `:
R = S1 / (P1 `* Q1`)Prenez le carré de R pour obtenir R2, le coefficient de détermination.